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ABSTRACT : This study selected Soczi Island in Taipei City as the experimental area to investigate the application of 

deep learning in automatically detecting buildings in aerial true orthoimages. Different time period aerial color true 

orthoimages were used to conduct deep learning MS-FCN (Multi-Scale Fully Convolutional Network) model building 

detection. The study incorporated DSM and DHM data to investigate the benefits of elevation on the model. The results 

demonstrated that compared to using only true orthoimages, the inclusion of elevation information from DSM and DHM 

could enhance the building recognition capabilities of the model, achieving F1-scores of 87.16% and 87.65%, respectively. 

According to the findings, applying deep learning in conjunction with high-resolution true orthoimages to aid building 

recognition is feasible. 

1.INTRODUCTION 

In recent years, inspired by the structure of the human brain and aided by advancements in computer technology, 

deep learning has attracted increasing attention. Many studies in image recognition have chosen Convolutional Neural 

Networks (CNNs) as the foundational architecture, achieving impressive recognition results. Previous literature has also 

highlighted the effectiveness of applying CNNs to image recognition or classification tasks, particularly in grid-based 

data. (Marmanis et al., 2016; Zhu et al., 2017; Duan et al., 2018) 

However, due to the fact that the final layer of a CNN uses fully connected layers to obtain classification prediction 

probabilities, these probabilities are one-dimensional and simultaneously lose spatial information from the input. To 

address this issue, Long et al. introduced the concept of a Fully Convolutional Network (FCN). FCN replaces one or more 

fully connected layers with convolutional layers, performing upsampling on the feature maps to obtain feature maps of 

the same resolution as the input image. Furthermore, FCN can accommodate input images of arbitrary sizes and perform 

pixel-wise detection by processing each individual pixel. 

In summary, this study uses true orthoimages as a foundation, combining dense matching Digital Surface Models 

(DSMs) and Digital Height Models (DHMs) for building recognition using MS-FCN (Multi-Scale Fully Convolutional 

Network) deep learning model(Zeng and Zhu, 2018). 



 

 

2.STUDY DATA AND METHODS 

2.1 Study Data 
  The study area is Soczi Island in Taipei City, located at the confluence of the Keelung River and Tamsui River, 

covering an approximate area of 300 hectares. The study collected original aerial images, interior and exterior orientation 

parameters, and 1/1000 topographic maps for Soczi Island in the years 2007 and 2021. The relevant data about aerial 

images is tabulated as Table 1. The aerial images in 2007 were collected by airplane that were flown by flying 1706 

meters above ground along 6 flight lines, comprising 4 east-west lines and 2 north-south lines with a forward and side 

overlap of 70% and 50% respectively, resulting in a ground sampling resolution (GSD) of 12.6 cm/pixel. The aerial 

images in 2021 were collected by airplane that were flown by flying height 1709 meters above ground along 6 flight lines, 

comprising 3 east-west lines and 3 north-south lines with a forward and side overlap of 80% and 30% respectively, 

resulting in an approximate GSD of 9.7 cm/pixel. 

Table 1. Study data 

Year Camera  focal length pixel size image size Total images 

2007 DMC 120 mm 12μm 7680 × 13824  101 

2021 UltraCam XP 100 mm 6μm 11310 × 17310 86 

In both years, Pix4D Mapper was used to generate dense point clouds for producing Digital Surface Models (DSMs) 

and true orthoimages. These outputs maintained the same resolution as the original images. Figure 1 shows the DSMs of 

Soczi Island in 2007 and 2021 after manual editing to eliminate outliers. Since the elevation derived from the collected 

exterior orientation parameters was based on ellipsoidal height, subsequently, a geoid undulation correction was applied 

to convert them into orthometric height. This study employed the geoid undulation calculation platform provided by the 

Ministry of the Interior's Land Administration, Taiwan, to assess the geoid undulation. An average geoid undulation was 

approximately 20 meters.  

   

Figure 1. DSMs of Soczi Island in 2007 (left) and 2021 (right) 

Because there were no significant changes in elevation within the Soczi Island region, this study adopted the Digital 

Elevation Model (DEM) derived from the refined 2021 DSM of the Soczi Island area as its foundation. By subtracting 

DEM from DSMs in 2007 and 2021, Digital Height Models (DHMs) for 2007 and 2021could be obtained. Figure 2 shows 

the DHMs of Soczi Island in 2007 and 2021. By integrating the true orthoimages, DSMs, and DHMs, the study aimed to 
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explore detection accuracy using MS-FC deep learning model. 

   

Figure 2. DHMs of Soczi Island in 2007 (left) and 2021 (right)  

  In this study, the image generated from the building vector layer of the 1:1000 topographic map was used as a reference 

to generate the label data for the model test. For this study, the true orthoimages, true orthopimages merged with DSMs 

and true orthoimages merged with DHMs for the Soczi Island area in 2007 were used as training data. The test data 

consisted of images of the same type from the year 2021. 

2.2 Study Methods 

  This study employs true orthoimages, true orthoimages merged with DSMs and true orthoimages merged with DHMs 

as input data to investigate the building recognition in the Soczi Island area of Taipei City. The study flowchart is shown 

in Figure 3. 

 

Figure 3. Building Recognition Study Flowchart 

2.2.1 Data Preprocessing: Data preprocessing includes label data generation, elevation data normalization, and data 

augmentation. Each step is described as follows: 

(1) Label data generation 



 

 

Label data was generated by overlaying the vector data of permanent houses, temporary structures, and open structures 

from the 1/1000 topographic map of Soczi Island onto true orthoimage. Three types of building vector data were converted 

from vector data to image raster data, called building image, by using ArcGIS Pro software with same GSD of true 

orthoimage. The building image consists of value 0 and 255, where 0 represents non-building pixel and 255 represents 

building pixels. Due to the generation of true orthoimage by Pix4D Mapper software with only the interior and exterior 

orientation parameters as initial values without using any control points, the systematic shift occurs. To ensure  proper 

alignment between the true orthoimage and the building image, this study manually added control points based on visually 

apparent and reliable building corners for image registration. Finally, the processed building image was cropped to a size 

of 512 × 512 pixels, called building label image, corresponding to the same dimension of their corresponding true 

orthoimage, called building label image data, as depicted in Figure 4. 

                        
  (a) True orthoimage                       (b) Building label image  

Figure 4. Building Label Data 

(2) Elevation data normalization 

Elevation data normalization includes the normalization of the DSMs and DHMs. The elevation values were 

normalized to a range from 0 to 255, as seen in Figures 5 and 6. The processed DSM and DHM images were also cropped 

into a size of 512 × 512 pixels, called DSM and DHM label images. 

   

Figure 5. Normalized DSM Image Data in 2007(left) and 2021(right) 

   

Figure 6. Normalized DHM Image Data in 2007(left) and 2021(right) 

(3) Data augmentation 
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To mitigate the issue of insufficient training samples leading to subpar model performance, this study employs data 

augmentation techniques to generate new training samples from existing data, aiming to prevent overfitting and enhance 

the quality of model training. Initially, the generated true orthoimage of 36467 × 52958 pixels and building image in 2017 

was cropped into 512 × 512 pixels image segments. Three common spatial transformation methods involving geometric 

aspects of the image are chosen for data augmentation: horizontal flipping, vertical flipping, and transposition, as shown 

in Figure 7. Through spatial transformations based on image geometry, not only is it possible to increase the number of 

training samples, but it also allows the segmentation targets to appear at different positions within the images to enhance 

the model's learning capabilities. When using geometric transformations for data augmentation, it's crucial to apply the 

same transformations to both the label data and the corresponding elevation information images. This ensures that the 

alignment between the input data and the labels is maintained throughout the augmentation process. 

           

Figure 7. Left: Horizontal flipping, Middle: Vertical flipping, Right: Transposition   

2.2.2 Deep Learning Network Model: This study refers to the model proposed by Zeng and Zhu (2018)for human, 

vehicle, and background segmentation, adopting the Multi-Scale Fully Convolutional Network (MS-FCN) to aid in 

building recognition, as shown in Figure 8.  

 

Figure 8. MS-FCN Building Recognition Model Architecture(Zeng and Zhu, 2018)  

The model architecture offers several advantages: (He et al., 2017；Zeng and Zhu, 2018) 

1.Direct FCN design: The model is designed based on the design principles of Fully Convolutional Networks (FCN), 

enabling the direct application of convolutional neural networks to pixel-level segmentation tasks.  

2.Multi-Scale fusion: The utilization of multi-scale fusion enhances segmentation accuracy and effectively handles 

objects of varying sizes. 

3.Feature utilization: The architecture maintains feature maps of different resolutions for input data at the same 

resolution. This approach fully utilizes image information from each layer of features and promotes efficient sharing 



 

 

of feature extraction, making it adaptable for various image segmentation tasks.  

By leveraging these features, the MS-FCN model proves to be effective in the task of building recognition, aligning 

with the objectives of this study. Then, Focal Loss function introduced by Lin et al. (2017), along with Precision, Recall, 

F1 Score, and Intersection over Union (IoU) metrics derived from confusion matrix calculations are employed to evaluate 

the discrepancies between predicted and ground truth. Focal Loss function adjusts the weights of training samples to focus 

more on challenging-to-classify samples during the training process and can mitigate class imbalance issues. F1 Score is 

computed using Precision and Recall and ranges between 0 and 1, with higher values indicating better detection accuracy 

by the model. IoU measures the similarity between two sets, and a higher IoU indicates a higher similarity between the 

model's detection results and the ground truth. These metrics collectively provide a comprehensive assessment of the 

model's prediction quality. 

3.STUDY DATA 

The tests utilized image data produced from true orthoimages, DSM, and DHM of Soczi Island in 2007 with a GSD of 

12.6 cm. The generated  true orthoimage size was 36467 × 52958 pixels, and it was cropped into 512 × 512 pixels 

segments as input for the deep learning model. 

For Test 1, true orthoimage was used as input images for the model. After data augmentation, the training dataset was 

split into an 8:2 ratio, with 4928 images (512 × 512 pixels) for training and 1232 images for validation. In Test 2, true 

orthoimage was merged with DSM image to create 4-band image data. In Test 3, true orthoimage was merged with DHM 

image to produce 4-band image data. The test data consisted of relevant image data from Soczi Island in 2021. The 

generated true orthoimage size was 11310 × 17310 pixels, and it was cropped into image patch of 512 × 512 pixels as 

input for the deep learning model for test. The test dataset was 1920 images (512 × 512 pixels). 

3.1 Deep learning model parameter setting 

  In this study, the building recognition study utilized the MS-FCN architecture. The convolutional process involved 

utilizing VGG-16 as the backbone of the MS-FCN network, combining the strengths of both architectures to extract 

building features effectively. After the convolutional layers, max-pooling layer was used to retain essential features within 

localized regions. A contrast layer was incorporated to enhance feature extraction, particularly in complex backgrounds. 

Additionally, the reverse convolution technique was used to restore the image dimensions. The final classification layer 

utilized the sigmoid function, commonly used in binary classification tasks.  

During the training of the deep learning model, the input image information can be influenced by the background, 

resulting in the inability to effectively segment building information. To address class imbalance issues, Focal Loss is 

commonly used (Lin et al., 2017). Throughout the training process, a learning rate of 0.0001 was set for the deep learning 

model. The optimization method chosen was the widely used Adam optimizer. Employing mini-batch training has several 

advantages, such as reducing training time, alleviating GPU memory stress, mitigating overfitting, enhancing 

generalization, and consequently improving accuracy on the test dataset (Keskar et al., 2016; Master and Luschi, 2018). 

Therefore, this study set the batch size to 2 for the deep learning model. The training was conducted over 120 epochs, 

utilizing pre-trained network weights from VGG-16 as the initial weights. 

During training, the model's performance was monitored by computing the loss value on the validation dataset. If there 

was no reduction in the validation dataset's loss over ten consecutive epochs, training was early-stopped to prevent 

unnecessary computations. This approach aims to optimize the training process and improve the model's effectiveness. 
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3.2 The analysis of the experimental results 
In terms of training times, Test 1 required approximately 3 hours, while Test 2 and 3 took around 6.5 hours each. Figure 

9 shows the precision and loss curves for model training and validation for Test1, 2, and 3. Figure 10 illustrates the 

recognition results the entire labeled image along with the outcomes from Test 1 to 3. Additionally, Figure 11 provides a 

detailed view of some exemplary results. The validation and testing accuracy results are summarized in Table 2. From 

the test outcomes, several points can be made: 

A. The precision and recall of the three test results were all above 83%, with F1-scores exceeding 85%, and IoU values 

surpassing 80%. This indicates that utilizing deep learning for intelligent building recognition yields promising predictive 

capabilities. 

 

precision curve 

 

 precision curve 

 

precision curve 

 

loss curve 

 

loss curve 

 

loss curve 
(a) Test1 (b) Test2 (c) Test3 

Figure 9. Precision curve and loss curve of building recognition tests 

   
(a) Label Image           (b) RGB 

   
(c) RGB+DSM         (d) RGB+DHM 

Figure 10. Building Recognition Results 



 

 

B. The results indicate that the deep learning model benefited from the elevation information provided by DSM and 

DHM. Both tests (Test 2: RGB+DSM and Test 3 : RGB+DHM) outperformed Test 1 (RGB only) in terms of accuracy 

metrics. In Test 2, precision, recall, and IoU was increased by 1.71%, 1.66%, and 1.08% respectively compared to Test 

1. In Test 3, precision, recall, and IoU increased by 2.46%, 1.87%, and 1.19% respectively compared to Test 1. 

C. In Figure 11, the first and second rows compare the detection results of building roof colors with similar colors of 

grounds or roads within the red boxes. It's evident that integrating RGB with DHM imagery (see the fourth columns) 

effectively enhances building detection due to the rich elevation information provided by DHM. In the third row within 

the red box, buildings with smaller spacing are accurately recognized due to the inclusion of DHM's elevation information 

(also see the fourth columns). 

D. From Table 2, the results demonstrate that Test 3 (RGB+DHM) outperforms Test 2 (RGB+DSM) in terms of 

precision, recall, F1-score, and IoU, with improvements of 0.75%, 0.21%, 0.49%, and 0.11% respectively. This shows 

that DHM provides more accurate building elevation information compared to DSM. 

 
(a) Original Image (b) Label   (c)RGB    (d)RGB+DHM 

Figure 11. Results Showing Using Only RGB Images and Using RGB+DHM Images 

Table 2. Deep Learning Building Recognition Verification/ Test Accuracy Results 

Verification/ Test Data RGB RGB+DSM RGB+DHM 

precision 84.67%/83.46% 86.23%/85.17% 87.08%/85.92% 

recall 88.62%/87.58% 90.36%/89.24% 90.63%/89.45% 

F1-score 86.60%/85.57% 88.25%/87.16% 88.82%/87.65% 

IoU 81.34%/80.27% 82.65%/81.35% 82.84%/81.46% 

Based on the analysis of building recognition from Figure 10, it was observed that the deep learning model still 

encountered situations of omission or misclassification due to factors like occlusion, shadows, or issues with the quality 

of the true orthoimages during the learning process. For the purpose of visualization, adjustments were made to the labeled 

images and recognition outcomes. These encountered situations are further explained below. 

(1) Tree occlusion or Vegetation on the rooftop 

Deep learning is image-based and relies on learning features from images to automatically segment objects. However, 

in reality, many building areas are obstructed by objects such as trees, which poses challenges to accurate recognition. In 

this study, when identifying buildings, only visible building structures could be detected. In cases where obstructions by 

trees occur, within the red circle shown in the left of Figure 12, the model cannot accurately recognize the complete 

structure of the building. Due to the presence of other plants on the rooftops of buildings, the model is unable to recognize 

the complete structures of the buildings, as shown in the right of Figure 12. 
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  (a)image     (b) label     (c)predict   

 

  (a)image     (b) label     (c)predict   

Figure 12. Diagram of buildings obstructed by trees (left) and vegetation on the rooftop (right). 

 

(2) Shadow over buildings  

Due to buildings being obscured by shadows, the model is unable to discern the structure of the buildings, as shown in 

Figure 13. 

(3) Quality of true orthoimages 

The true orthoimages utilized in this study were generated using the Pix4D Mapper software through automated aerial 

triangulation and adjustment. This process offers advantages such as speed and minimal manual intervention. However, 

certain areas in the images still exhibit distortion and deformation issues, as depicted in Figure 14. 

 

  (a)image     (b) label     (c)predict   

 

  (a)image     (b) label     (c)predict   

Figure 13. Illustration of shadow over buildings Figure 14. Quality issues with true orthoimages 

(5) Buildings not labeled on the topographic map. 

Unmarked buildings present in the used label data can still be recognized by the model, as depicted in Figure 15. 

 
  (a)image     (b) label     (c)predict   

Figure 15. Unmarked building in label data 

4 CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

This study used the MS-FCN deep learning model for building recognition, integrating high-resolution true orthoimage 

with DSM and DHM. The accuracy of the deep learning model for building recognition by true orthoimage incorporating 

DSM, the precision was 85.17%, recall was 89.24%, and IoU was 81.35%. Compared to using only true orthoimages, the 

precision was increased by 1.71%, recall by 1.66%, and IoU by 1.08%. Additionally, high-resolution true orthoimages 

were merged with DHM. The results indicated that incorporating DHM provided more accurate building elevation 

information than incorporating DSM. The precision was 85.92%, recall was 89.45%, and IoU was 81.46%. Compared to 

using DSM, the precision increased by 0.75%, recall by 0.21%, and IoU by 0.11%. 

Furthermore, upon observing the test results, it is evident that when buildings are clearly visible, deep learning can 



 

 

recognize complete buildings. However, there are still areas prone to omission due to occlusions or shadows, as well as 

cases where the absence of building labels on the topographic map leads to false positives. Despite these challenges, deep 

learning is not solely reliant on proper parameter tuning for feature extraction, but rather has the capability to learn specific 

features. This aspect helps mitigate segmentation errors and avoids extracting unnecessary information. 

4.2 Recommendations 

The quality of true orthoimage is an important factor, the use of oblique photography alongside vertical photography 

to construct more comprehensive true orthoimages could be done in the future. The test area in this study is the Soczi 

Island area of Taipei City, Taiwan. Due to the diverse building colors and structures in various regions of Taiwan, along 

with the occurrence of unauthorized construction, the deep learning building detection model used in this study might not 

be directly applicable to other regions in Taiwan. For future studies in similar contexts, it is recommended to consider 

employing transfer learning. This approach involves utilizing pre-trained model weights to speed up the training process 

for new areas or similar domains, thereby enhancing efficiency. In our analysis of building recognition results, we observe 

that even with the integration of DHM elevation information with true orthoimages, the model still struggled to accurately 

identify buildings in shadow areas. For future study, it is recommended to explore adjustments in the weighting of the 

DHM input channel or consider preprocessing techniques to enhance the visibility of buildings within shadow regions. 

This could involve modifying the color tones or other factors related to the shadow to enable the model to more effectively 

discern buildings in these areas, ultimately improving the overall completeness of building recognition. 
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